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ON SEASONAL VARIATIONS OF MARS' GRAVITATIONAL FIELD

INTRODUCTION

It is well-known that Mars has seasons l1ike the Earth. However, the
Mars' colder atmospheric temperature (in average some 70°K lower than the
Earth's) and its predominantly carbon dioxide (CO,) atmosphere (more than
95%) conspire to create a large exchange of C02 mass between the Mart1an
atmosphere and polar caps. The mass exchange occurs in seasonal cycles:
great quantity of CO, condenses to form (or add to) the polar caps in winter
and sublimes into the atmosphere in summer. The mass involved is at least
gx101° kg, which is about 25% of the total mass of the Martian atmosphere,
or equivalent to a cap of solid CO, extending to 45° latitude changing its
thickness by some 20 cm (Hess et a? 1979),. In contrast, the Earth's atmo-
sphere only varies seasonally by about 1x1015 kg (or about 0.02% of the
total), primarily due to variation of water vapor content (Trenberth, 1981).

The effect of this CO, mass redistribution on Mars' rotation has been
discussed by Reasenberg and King (1979) and Cazenave and Balmino (1981). The
present paper is an attempt to address quantitatively this CO,-exchange
effect on the Martian gravitational field. Qualitatively, the gravitational
effect of any global-scale mass redistribution is largely decided by the
ratio of the net redistributed mass to the total mass of_the planet. For the
Martian CO,-exchange effect, the ratio is 8x1015/6.4x1023, or about 10-8. No
geological or geophysical phenomenon on Earth is known to produce a relative
mass redistribution of nearly that size in a year. The post-glacial rebound
of the mantle, the strongest southern oscillation / E1 Niffo events in the
atmosphere and the ocean, and the greatest earthquakes are all at least one
to two orders of magnitudes smaller. Since even these geophysical phenomena
are already being observed gravitationally by Earth-orbiting satellites
(e.g., Rubincam, 1984; Gross and Chao, 1985), we can expect the COZ—exchange
effect on Mars to be detectable from future Mars orbiter missions. If so,
the observed gravitational field changes can provide gross constraints on
the meteorological models for Mars.



GENERAL FORMULATION

Let the coordinate system be such that the origin is at Mars' center of
mass, and the x, y, and z axes define the 0°E Meridian, the 90°E Meridian,
and the North Pole, respectively. We express the gravitational potential U
of a planet at an external field point ry through spherical harmonic expan-
sion (e.g., Balmino, 1981):

GM R)2
ro ro

where fl is an abbreviation for the co-latitude 6 and east 1ong1tude P
(rp:bpirg) = (rg.fg) is the spherical coordinate of ry, G is the grav1ta-
tiona? constant M the total mass, and R the mean radius of the planet. The
spherical harmon1cs in this paper are defined as

Yip() = [(2-6mo)(2]+1)(1-m)!/(]+m)!]1/2 Py (cos6) eim\ (2)

where 1 and m are respectively the degree and order, & is the Kronecker
delta function, Py, is the associated Legendre function. We shall later use
the index (1,m) to specify a particular harmonic component. The normaliza-
tion in (2) is such that

[ Yy (8) Yy (R) d = 4x (2-8,9) 617+ Oy (3)

where the asterisk denotes complex conjugation, dl is an element of solid
angle, and the integration is over the unit sphere.

Neglecting higher order terms, the first two terms in equation (1) rep-
resent the potential the planet would have assumed in hydrostatic equili-
brium (indicated by the superscr1pt H) under rotation. That constitutes the
reference spheroid. Thus the remaining term T(r, ) is the anomalous potential
relative to the reference spheroid. It can be expressed as

GM » 1 (RY! .
L A o B AL ®)

where Re denotes the real value. The normalization in (3) is chosen such
that the harmonic coefficient Ajp in (4), here referred to as the complex
Stokes coefficient, is directly related to the ordinary (normalized) Stokes
coefficients Cy, and Sy, (c.f. Kaula, 1966) simply through

AMm = Cim * 51, (5)

The geoid of a planet is the equipotential surface on which T(r )=0. Its
departure from the reference spheroid is the geoid height (c.f F1gure 3).




By comparing equations (1) and (4) with the multipole expansion of U,
one can relate the complex Stokes coefficients to the density distribution
p(r) of the planet (e.g., Chao & Gross, 1986):

1

= 1
AMm 210 W J p(r) vl Yyn(0) dV (6)

where dV is the volume element, and the integration is over the entire
volume V of the planet.

Now suppose a time-varying change Ap(r,t) is imposed upon p(r). In an
Eulerian description, the resultant change in the complex Stokes coefficient
follows immediately from equation (6):

1

My = [ dp(r) 1oy (0) dv (7)

(21+1) MR!

where the integration is now over the changing volume of the planet. In the
following we shall translate these changes into equivalent changes in the
geoid height N using Bruns formula N=T/g, where g = GM/RZ is the surface
gravitational acceleration (e.g., Rapp, 1975). This, in the present case,
gives the root-mean-square (rms) amplitude of the (1,m) component of the
geoid height change:

ANy (E) = R | AR (L) |. (8)

AN () (in millimeters) provides a comfortable measure of the effect of
Aplr,t) on the geoid.



CO, MASS EXCHANGE ON MARS

Equation (7) will now be applied to the CO, mass exchange between the
atmosphere and polar caps on Mars. First, we notice that this mass exchange
occurs in a thin veneer on the Martian surface (only a few tens of kilo-
meters thick), and any radial movement is negligible in the presence of the
global-scale lateral movement. Therefore, to a good approximation we can
take r=R and use surface density Ao(fl,t) in place of the volume density
Ap(r,t). Equation (7) then reduces to

R2

A = ———— [ bo(Q,t) Yy,(0) dO 9
Ay, (1) Zin ] ba(f,t) Yqp(0) (9)

where the integration is over the entire surface of the planet.

The simplicity of equation (9) is deceiving because to obtain the true
Aos(0,t) one should in general take into consideration the grav1tat1ona]
interaction between the shifting mass and the rest of the planet, or, in the
present case, the effect of the elastic yielding of the solid Mars due to
the loading and unloading of the CO, mass. However, as shown below, this
interaction is small on Mars so that the solid Mars can be treated as a
rigid body.

The relevant parameter is the load Love number ki of degree 1 and how it
compares to unity. Assuming a homogeneous planet,

-1

k, = (10)
1+ (198 / 2pgR )

(Munk & MacDonald, 1960). Here and § are the average density and rigidity,
respectively, and p = 3.9 X 103 kg m~>. If we_assume_that Mars has the same
average rigidity as the Earth, p & 1.45 x 1011 kg m~1 s-1," then [k;| =
0.037, or about one eighth of the Earth's (Lambeck, 1980). This, in fact,
may be an upper limit on |k | since Mars, being a colder planet 1nterna11
might have a higher r1g1d1ty than the Earth s. Likewise the other |k |<<1
We thus conclude that the elastic yielding of the solid Mars can be safe]y
neglected. We shall also neglect the self-gravitation within the CO, mass
itself., The resultant errors are relatively small compared with those
introduced by the simplifications we shall make in our model below. In the
rigid solid Mars approximation, we can extend equation (9) to encompass 1=1
(m=0,+1) terms. These terms simply give the relative shift in the center of
mass of the solid part of Mars due to the €0, variations.

Now let us follow the seasonal journey of the CO, mass and examine
separately the contributions to (9) of two phases: (7) the waxing and waning
of the solid CO, in polar caps, and (ii) the geographical distribution of
the gaseous €0, in the atmosphere. The two phenomena, of course, accompany
each other inasmuch as the total CO, mass is constant. The tota] CO,-
exchange effect is simply the sum o% the two contributions.

4
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Fig. 1. A cross section of Mars showing schematically two solid CO, polar
caps.



Waxing and Waning of Polar Caps

First let us examine the simple geometry where the seasonal condensation
and sublimation occur uniformly over the polar caps, and the caps are
circular and symmetrical with respect to the poles (Figure 1). The surface
density Ao(f,t) = Ao(t) is thus a constant of position on the caps which
extend to a constant angle & from the poles.

For m#0, equation (9) gives AAj, = 0, an expected result in light of the
axial symmetry under the present assumptions. For m=0, after some simple
algebra, equation (9) leads to

1 1 AM(t)
—— J Py(p) dpg ——— l + (-1 [ same ] (11)
v21+1 (1-cosx) M n s

Ccosk

where Py is the Legendre function of degree 1, AM(t) = 2aRZ(1-cosk)Ac(t) is
the total CO, mass accumulated on the cap at any given moment, and the
subscripts n"and s indicate the northern and southern hemispheres, respec-
tively. Due to the eccentricity of the Mars' orbit the southern CO, polar
cap is considerably more massive and extensive than its northern counterpart
(Hess et al., 1979). At the peak of its formation, the angular extent «
actually varies with longitude between 40° and 50°, according to Viking
orbiter observations (Briggs et al., 1977). For simplicity we shall take as
an average £.=45°. The value of x, is less certain. The variation of the CO
mass in the polar caps, AM(t), can be estimated from the atmospheric pres-
sure recordings of the two Viking landers (Hess et al., 1979, 1980). It is
shown schematically in Figure 2, where the zero level corresponds to the
minimum polar cap C0, (or, equivalently, maximum atmospheric C0,). Here an
annual period (669 sols, or 687 Earth days) and a semi-annual period
dominate. Although it is not possible from these records to separate the
contributions from the northern and southern caps, each cap is responsible
for essentially half a (Martian) year. It is interesting to note from
equation (11) that the variation in the Stokes coefficient, AC 0r will
follow the sum of the contributions from both caps if 1 is even, and the
difference if 1 is odd. Thus, under the present simplification, if we can
observe two varying C]O(t), one for an even 1 and one for an odd 1, it is in
principle possible to solve for AM (t) and AMS(t) using equation (11), thus
providing two important constraints on meteorological models for Mars.

It is also evident from equation (11) that the amplitude becomes
progressively smaller as 1 increases. Here we shall only consider a few
lowest degree terms by evaluating their maximum amplitudes which occur at
the peak of formation of the southern cap (t=t,, see Figure 2). Thus,
substituting into equation (11) the value for RM, M (tg) = 8 x 1015 kg, and
k=45, we get AC 0(t ) for 1=1-5, listed in Table 1. Table 1 also shows the
corresponding amp]1tu e of change in the more familiar zonal J; coefficients
which are related to Cyq by Jy = -v(21+1)Cyq, as well as the rms amplitude

6



Polar caps
gx10"°|———m ————— —
| Amg
I
A |
g I
% \\\ ~7 }
7
G 27 |
{3 ~ “ B 1
7 AN |
£ \ =~ | //
~ ~. -~ N | /
(@) — 7 Am \ | /
O \ I y
\ I
N //
/
-8x10" |— \i\oi’/
Atmosphere :
0 to 669
Time (sol)

Fig. 2. CO, mass change in the course of one Martian year where the zero
time (t=0) corresponds to the winter solstice (adopted from Hess et al.,
1980). The upper curve represents the formation of the solid CO, polar caps,
and the lower curve represents the corresponding loss of atmospﬁeric CO,.




in the corresponding geoid height change as given by equation (5) using
R=3390 km. The largest change is in the 1=1 term, which corresponds to a
maximum shift of V(21+1)AN10 = 36 mm by the solid planet with respect to the
center of mass at t=t,. The yearly peak-to-peak variation taking into
account both northern and southern caps is about 52 mm. The most geodeti-
cally interesting change, however, is in J, which is the second largest
term: AJ, = -7.5 X 1077. The nominal value of J, has been well determined
(e.g., Reasenberg et al., 1975) to be J, = 1.956 x 10-3. The maximum
amplitude of the relative seasonal change is therefore AJ,/J, = 3.8 ppm
(parts per million). In comparison, this is two orders of magnitude larger
than the observed secular change in the Earth's J, (presumably due to the
post-glacial rebound of the mantle) which is founa to be only 0.024 ppm per
year (Rubincam, 1984).

The values in Table 1 are obtained under the simplification of a uniform
condensation/sublimation of solid CO, over the entire polar caps (Figure 2).
The real distribution, however, is probably more concentrated toward the
pole. The latter will yield somewhat larger changes in C]O(t). Hence Table 1
is only a lower bound on AC O(to). For example, the extreme case where all
the condensed CO, is concenlrated at the pole (x+0) gives, according to
equation (11), a AJ,(ty) of -12.5 x 10~9 which is some 60% larger than the
uniform case. A moré realistic, "layered cake" model where the CO, layer
between £=0° and 22.5° is twice as thick as that between £=22.5° and 45°
yields a Ady(ty) of -8.7 x 1079,

Table 1. Maximum gravitational effect of the changing polar cap o,
(equation 11).

1 ACyo (x109)  AJy (x109) ANy (mm)
1 -6.1 10.6 21

2 3.4 -7.5 11

3 -1.5 4.0 5.0

4 0.31 -0.94 1.1

5 0.30 -1.0 1.0




Geographical Distribution of the Atmosphere

The Martian surface topography will influence the way the changing
atmospheric C0, mass distributes itself geographically; that, in turn, will
produce changes in the gravitational field. For simplicity, we here assume
that the atmosphere is always in hydrostatic equilibrium. Physically, this
requires an instantaneous redistribution of CO, mass over the globe. This is
permissible since we are only concerned with seéasonal periods which are much
longer than the time scale for Martian atmospheric circulation.

In equilibrium, any isopycnic (constant density) surface of the atmo-
sphere will follow an equipotential surface of the gravitational field. In a
hypothetical case where the surface topography is itself a geoid (for
example, if the entire planet were covered by an ocean), the geographic
distribution of the atmosphere would be practically uniform in the sense
that its surface density o(Q,t) would be independent of geographic location
l, changing only with time t. In such a case, the changing atmosphere has no
gravitational effect (except on the total mass which, of course, is compen-
sated by the waxing and waning of polar caps). In reality, the Martian
surface topography is not a geoid. In fact, Mars, unlike the Earth, has a
relatively large surface relief, so much so that a substantial fraction of
the atmosphere can "feel" the topography. The atmospheric surface density ¢
will be smaller where the topography protrudes the geoid (e.g. over a high
plateau), and larger otherwise (e.g. over a low basin).

Thus, it is the departure of the true topography from the geoid that
determines how o(l) is to deviate from being uniform. This "effective
topography", denoted by h(fl) (see Figure 3), can be written in terms of
spherical harmonics as

w ]
h(n) = R Re[ L L Hyp Vi) ] (12)
1=1 m=0 .
The coefficient Hy,, using equation (4) and Bruns formula, is
M = Him - Mm (13)

where Hy_ is the complex harmonic coefficient of the true topography h'(n)
(relative to the reference spheroid):

o |

h'(a) = R Re[ I L £ () ] (14)

Notice that in equations (12) and (14) we included first-degree (1=1)
harmonics. They represent a displacement of the center of figure from the
center of mass (Bills and Ferrari, 1978).
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Fig. 3. Schematic diagram showing the distribution of atmosphere as speci-
fied by the scale height, in relation to the topography, the geoid, and the
reference spheroid. N: geoid height, h : true topography, h: effective
topography, z: vertical height from surface.

Table 2. Maximum gravitational effect of the changing atmospheric CO,
(equation 20).

(1,m) (ACyp ASyp) (x109)  AJy (x109) ANy, (mm)
(1,0) ( -0.48 - ) 0.84 1.6
(1,1) ( -0.021 0.51 ) -- 1.7
(2.0) ( -0.73 - ) 1.6 2.5
(2,1) ( 0.11 -0.16 ) -- 0.67
(2,2) ( -0.31 -0.25 ) -- 1.4
(3,0) ( 0.046  -- ) -0.12 0.16
(3,3) ( 0.085 -0.25 ) -- 0.88
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From h(Q) we can obtain As() for the atmospheric CO, as follows. The
lower atmosphere is where virtually all the atmospheric mass resides. The
equilibrium density variation there can be approximated by the isothermal
profile

p(z,0) = py exp[-(z+h(0))/Z] (15)

where z is the vertical height from the surface, and p, is the atmospheric
density on the geoid z=-h(Q). Z is the atmospheric sca?e height (see Figure
3) and is given by

Z = kT/ug (16)

where k is the Boltzmann constant (1.38 x 10-23 J °Kk-1), T is the tempera-
ture of the lower atmosphere, v is the molecular weight of €o, (7.3 x 1026
kg), and the surface gravity g=3.7 m s-2,

The temperature T, and hence the scale height Z are of course functions
of time and position. For simplicity we shall take T to be the spatially
averaged atmospheric temperature over the globe at any given time. By doing
so we are essentially disregarding the effect on Z due to diurnal fluctua-
tions in the temperature. This is permissible because these fluctuations
average out on a seasonal time scale and has little bearing in the present
study. However, T is still a function of the time of the year because of the
eccentricity of the Mars' orbit relative to the Sun. In particular, T will
be highest near perihelion (late southern spring) and lowest near aphelion
(late southern fall). A brief examination of Figure 2 reveals that at the
times under consideration, namely the times when the amount of the atmo-
sphere is at its maximum (t=0) and minimum (t=t;), the globally averaged T
should be about the same and somewhat higher than the yearly mean value.
Therefore we can take T as a constant for which our best judgment is T =
220°K, corresponding to a nominal Z = 11 km according to equation (16). For
Viking lander observations during landing at Northern mid-latitudes in
summer, the reader is referred to Seiff and Kirk, 1977. We should mention
that we have considered the surface values only. In reality, the temperature
decreases with increasing altitude fairly rapidly, so that the "effective"
scale height is somewhat smaller than 11 km. In other words, 11 km is
probably an upper bound on Z.

Under all the simplifications made so far, the change in surface density
of the atmospheric Co, is

do(0,t) = [ Bp(z,0,t) dz = App(t) T exp[-h(Q)/7] . (17)

To proceed, we notice that, although the true Martian topography (h') is at
places comparable to or even exceeds the atmospheric scale height Z, the
effective topography (h) is generally much smaller. In fact, the rms ampli-
tudes R|Hy,| of the individual (1,m) harmonic component of h are all small
compared with Z (the largest term is only about 0.1Z, see Bills and Ferrari,
1978). This is a consequence of the high correlation between the topography
and the gravitational field of Mars (e.g., Bills & Ferrari, 1978), especia-
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11y in low-degree harmonics on which we shall concentrate. Therefore we can
approximate exp[-h(R)/Z] by substituting the expression (12) for h(Q) and
retaining the first-order terms in a Taylor expansion

R o ]
exp[-h(R)/2] = 1 - _E_ Re[ 121 E Him Y]m(n) ] (18)

Substituting this expression into equation (17) and then into (9) leads to

(t) - -9 H k [3 P oH ()H @) d  (19)
AA t) = ——— 1 - — Re tet Y100 (1] Y fl fl 19
im ax(21+1)M Z {istm=g 'MW Im

where AM(t) = 41R22Apg(t) is the total 0, mass added to the atmosphere.

Using the orthogonality (3) of the spherical harmonics, equation (19)
reduces to

2-6 RH AM(t)
My (t) = - — —In (20)
21+1 JA M

as long as 1,m # 0. Equation (20) is the final formula for the gravitational
effect due to the changing atmospheric CO, mass. Note that this effect
separates naturally into spherical harmonics, in the sense that the (1,m)
component of the change in the complex Stokes coefficient, AAy., is directly
and solely proportional to the (1,m) component of the effective topography,
RHyn. This further justifies a posteriori the approximation in equatlon

AT The atmospheric C0, mass change AM(t) = -[AM, (t) + AM (t)] is shown in
F1gure 2. The Hy, coefficients can be obtained, accord1ng o equation (13),
from the H l1mates published by Bills and Ferrar1 (1978) and the Ay
estimates by Chr1stensen and Balmino (1979) and Balmino et al. (1982). Note
that the Sy, values in these studies should change sign to conform to our
present de}1nition of the (east) longitude ).

Table 2 presents the maximum amplitude of Ay (t), which occurs at t=t

when AM(tgy) = -8 X 1015 kg (Figure 2), for some most prominent low-degree
harmon1cs

The first-degree (1=1) harmonics gives the change in the relative
displacement of the center of figure from the center of mass (Bills and
Ferrari, 1978). This displacement is found to be 2.4 mm in the direction
(92°E, 44°N) using our longitude convention.

The change in the (2,0) harmonic, and hence in J,, is again the largest
term, this time reflecting the solid Mars' large deviation from a
hydrostatic equilibrium state. It is out of phase with the polar cap contri-
bution, decreasing the amplitude by nearly one quarter. The reason these two
changes in J, are out of phase is due to Mars' excess topographic oblate-

12
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ness. The polar regions are topographically low. Hence the excess atmosphere
there decreases when the caps grow, increasing J,. Note that the change in
the (3,0) harmonic, and hence in J,, is also out of phase with respect to
the polar cap contribution, but its amplitude is negligible.

The change in the (2,1) harmonics gives rise to a shift in the principal
axis of the greatest moment of inertia, or the figure axis. The angular
departure of the figure axis from the z axis is usually expressed in terms
of its x- and y-components, ¥ = ¥, +i¥, . This function ¥ excites the polar
motion and is thus known as the polar-motion excitation function (Munk and
MacDonald, 1960). For any excitation mechanism that loads the planet (such
as atmospheric variations), ¥ can be found by

B(t) = - v5 [ ACpy(t) + i8S,q(t) 1/ (V3 3y). (21)

The excitation function in the present case has some interesting features,
as can be shown from equation (21) and Table 2. First, it stays strictly
along a fixed meridian (125°E), simply because the topography is fixed.
Second, its maximum amplitude is 26 milliarcsecond (mas), equivalent to a
surface polar displacement as large as 45 cm. Compare this with that on
Earth produced by the great 1960 Chilean earthquake, 23 mas (e.g., Chao &
Gross, 1986) or the strong E1 Nino event of 1982-1983, ~40 mas (Gross and
Chao, 1985). Unfortunately this rather strong excitation, at annual (669
sols) and semi-annual periods, is not likely to generate a large polar
motion. This is because Mars, assuming an Earth-like rigidity, has a free
wobble period of about 200 sols. Hence, unlike the Earth, no resonance
should be expected from seasonal excitations.

The (2,2) and (3,3) harmonics are the only other components that have
geoid height changes comparable to the above changes. They are exceptionally
large on Mars simply because of the existence of the extensive Tharsis
construct and its antipodal, but smaller, uplift.

13



Discussion

The variations in Mars' gravitational field due to the CO, mass exchange
are generally very large compared with their terrestrial coun%erparts.
Nevertheless, whether they can be observed by the upcoming MOM (Mars
Observer Mission, due to be launched in 1990) is presently uncertain. A
simple simulation made by F. Lerch and C. Wagner for an MOM proposal (1985)
has indicated that, using Doppler tracking data of the MO orbit alone, the
change in J, can be marginally detected. If in addition the surface alti-
metry data %as differences at crossovers) are available, then the accuracy
in the gravitational field determination is expected to be improved. It may
then be possible to detect changes in J, to a higher precision, thus placing
constraints on the meteorological models of Mars. However, the simulation is
done under the assumption that all favorable conditions prevail throughout
the MOM 1ifetime (1 Martian year), and that no non-gravitational forces is
acting on the spacecraft. The latter includes the atmospheric drag whose
effect on the MO orbit, according to some estimates, may completely obscure
the orbital effects caused by the small seasonal variations in the gravita-
tional field. At the present time, simply too little about the Martian
atmospheric density is known to warrant any further modeling.
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